551 research outputs found

    Following fox trails

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56277/1/MP032.pd

    Mammals from Guatemala and British Honduras

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56271/1/MP026.pd

    The moose of Isle Royale

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56270/1/MP025.pd

    The ability of fragmented kelp forests to mitigate ocean acidification and the effects of seasonal upwelling on kelp-purple sea urchin interactions

    Get PDF
    Bull kelp (Nereocystis leutkeana) forests along the coast for northern California have decreased dramatically as a result of a ‘perfect storm’ of multiple environmental stressors. The disappearance of a predatory sea star and subsequent increase in purple sea urchins (Strongylocentrotus purpuratus) and the recurrence of marine heat waves have caused these once diverse ecosystems to be rapidly converted into relative species-depauperate urchin barrens. By examining the interactive effects of both a rapidly changing abiotic environment and the increase in urchin grazing pressure that is affecting this vital ecosystem, we can better understand its ultimate fate and make better-informed decisions to manage and protect it. As once large and persistent kelp forests are converted into fragmented landscapes of small kelp patches, kelp’s ability to take up dissolved inorganic carbon and reduce nearby acidity and increase both dissolved oxygen and bio-available calcium carbonate may be reduced, preventing it from serving as an environmental stress-free ‘oasis’ of reduced environmental stresses for local marine organisms and affecting ecosystem dynamics. In my first chapter, I examined whether small, fragmented kelp patches are able to retain their ability to alter local seawater chemistry to the same extent a large persistent kelp forests that have been studied previously. I found that in the canopies of small kelp patches, multiple parameters of carbonate chemistry fluctuated more than in the kelp benthos and in adjacent urchin barrens, consistent with metabolic activity by the kelp. Further, kelp fragments increased pH and aragonite saturation and decreased pCO2 during the day to a similar degree as large, intact kelp forests. These results suggest that small kelp patches could mitigate OA stress during the day and serve as spatial and temporal refugia for canopy-dwelling organisms. I also found that the benthic environment in kelp forests and adjacent urchin barrens is subject to unbuffered decreases in temperature, dissolved oxygen and pH. Thus, in chapter two, I assessed how current-day and future-predicted fluctuations in the duration and magnitude of these upwelling-associated stressors would impact the grazing, growth, and survivorship of purple urchins from kelp forest and urchin barren habitats. With upwelling predicted to increase in both intensity and duration with global climate change, understanding whether urchins from different habitats are differentially affected by upwelling-related stressors will give insight into how current and future stressors may be able to help ‘tip the scales’ and convert the increasing number of urchin barrens back into healthy productive kelp forests. I found condition-dependent susceptibility in urchins to increased magnitude and duration upwelling-related stressors. Grazing and gonadal development in kelp forest urchins was most negatively affected by distant future upwelling conditions, whereas in urchin barren urchins, grazing and survival were sensitive to exposure to upwelling in general, and also to increase in magnitudes of acidity, hypoxia, and temperature across both upwelling and non-upwelling events in the future. These results have important implications for population dynamics of urchins and their interactions with bull kelp, which could strongly affect ecosystem dynamics and transitions between kelp forests and urchin barrens. Taken together, the two chapters my thesis provide valuable insight into the potential resilience of bull kelp, a critical foundation species in northeastern Pacific coastal habitats, in the face of a rapidly changing multi-stressor environment

    Assessment of the normal fundus

    Get PDF
    Assessment of the normal fundu
    • …
    corecore